III. Level 3. The McKay-Thompson series of class 3A for the Monster (A030197)
j3A(τ)=((d1d3)6+33(d3d1)6)2=((d1d3)2+9(d39d1d23))6 The second form shows they may be 6th powers. Examples:
j3A(1+√−5/32)=−(√3)6j3A(1+√−17/32)=−(2√3)6j3A(1+√−41/32)=−(4√3)6j3A(1+√−89/32)=−(10√3)6 Compare to a similar phenomenon for Level 2. These have discriminant d=3p for prime p=5,17,41,89 and have class number 2. For class number 6,
j3A(1+√−29/32)=−(x√3)6j3A(1+√−113/32)=−(y√3)6j3A(1+√−137/32)=−(z√3)6 where (x,y,z) are the real roots of the cubics
x3−x2−4x−5=0y3−14y2−4y−16=0z3−22z2+44z−32=0 and so on. For class number 10, j3A(1+√−53/32)=−(u√3)6 where u is the real roof of the solvable quintic u5−8u4+19u3−26u2+16u−11=0 as well as for other d.
No comments:
Post a Comment