Let j=j(τ) be the j-function. Define j1B(τ)=432√j+√j−1728√j−√j−1728=1q−120+10260q−901120q2+… which is (A299954). Then the following values j1B(1+√−192)=−432U19a=−432(√963/123+√963/123+1)2j1B(1+√−432)=−432U43b=−432(√9603/123+√9603/123+1)2j1B(1+√−672)=−432U67c=−432(√52803/123+√52803/123+1)2j1B(1+√−1632)=−432U163c=−432(√6403203/123+√6403203/123+1)2 are fundamental units, solutions to Pell equations x2−ny2=±1 and where (a,b,c,d)=(6,15,330,10005). The smaller Heegner numbers like d=11 don't yield fundamental units. And the second one U43b=U645 involves a cube (Wolfram computation), j1B(1+√−432)=−432U645=−432(127+5√6452)3 which seems surprising. Note that 432(√−U645+1/√−U645)2=−9603
No comments:
Post a Comment