For certain even levels divisible by
7 such as
7×4,7×6,7×18 or
28,42,126, we may still find an eta quotient
a such that
a+m=b is also an eta quotient, but only for
one integer
m. Define
dk=η(kτ) with the
Dedekind eta function η(τ) and
a=(d1d7d4d28),b=(d32d314d1d24d7d228) then
a+2=ba+4a+4=(d22d214d1d4d7d28)3b+4b−4=(d1d7d2d14)3 where
(a,b) is the McKay-Thompson series of class 28C for the Monster (
A161970).
No comments:
Post a Comment