Wednesday, November 6, 2019

Entry 63

For certain even levels divisible by \(7\) such as \(7\times4,\, 7\times6,\, 7\times18\) or \(28, 42, 126\), we may still find an eta quotient \(a\) such that \(a+m = b\) is also an eta quotient, but only for one integer \(m\). Define \(d_k=\eta(k\tau)\) with the Dedekind eta function \(\eta(\tau)\) and $$a=\left(\frac{d_1\,d_7}{d_4\,d_{28}}\right),\quad b = \left(\frac{d_2^3\,d_{14}^3}{d_1\,d_4^2\,d_7\,d_{28}^2}\right)$$ then $$\begin{align}a+2 &= b\\ a+\frac{4}{a}+4 & = \left(\frac{d_2^2\,d_{14}^2}{d_1\,d_4\,d_7\,d_{28}}\right)^3\\ b+\frac{4}{b}-4 &= \left(\frac{d_1\,d_7}{d_2\,d_{14}}\right)^3\end{align}$$ where \((a,b)\) is the McKay-Thompson series of class 28C for the Monster (A161970).

No comments:

Post a Comment