Processing math: 100%

Wednesday, March 27, 2019

Entry 38 The Jacobi, Borwein, and derived Jacobi theta functions

For consistency, let q be the nome's square q=e2πiτthroughout. 

I. The null Jacobi theta functions (with z=0) are,
ϑ3(q)=m=qn2=η2(τ)η(2τ)+4η2(16τ)η(8τ)=η5(2τ)η2(τ)η2(4τ)
ϑ4(q)=m=(1)nqn2=η2(τ)η(2τ)
ϑ2(q)=m=q(n+1/2)2=2η2(4τ)η(2τ)

II. The Borwein cubic theta functions are,
a(q)=m,n=qm2+mn+n2=η3(τ)η(3τ)+9η3(9τ)η(3τ)
b(q)=m,n=ζmnqm2+mn+n2=η3(τ)η(3τ)
c(q)=m,n=q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2=3η3(3τ)η(τ)

where ζ=e2πi/3

III. The derived Jacobi theta functions are,
d(q)=ϑ44(q)+2ϑ42(q)=η8(τ)η4(2τ)+32η8(4τ)η4(2τ)
e(q)=ϑ44(q)=η8(τ)η4(2τ)
f(q)=12ϑ42(q1/2)=8η8(2τ)η4(τ)
These obey the beautiful relations, ϑ43(q)=ϑ44(q)+ϑ42(q)
a3(q)=b3(q)+c3(q)
d2(q)=e2(q)+f2(q)
As well as, ϑ3(q)ϑ3(q3)=ϑ4(q)ϑ4(q3)+ϑ2(q)ϑ2(q3)
a(q)a(q2)=b(q)b(q2)+c(q)c(q2)
d(q)d(q)=e(q)e(q)+f(q)f(q)
the last of which naturally leads to the third one above. Also, ϑ3(q4)=ϑ4(q)+ϑ2(q4)
a(q3)=b(q)+c(q3)
d(q2)=e(q)+f(q2)
The Jacobi thetas can be expressed in terms of each other,
ϑ3(q)=ϑ4(q)+2ϑ2(q4)
ϑ4(q)=2ϑ3(q4)ϑ3(q)
ϑ2(q)=ϑ3(q1/4)ϑ3(q)
similarly for the Borwein thetas, a(q)=b(q)+3c(q3)
2b(q)=3a(q3)a(q)
2c(q)=a(q1/3)a(q)
and also similarly for the derived Jacobi thetas, d(q)=e(q)+4f(q2)
3e(q)=4d(q2)d(q)
3f(q)=d(q1/2)d(q)
Furthermore, we have the similar, (ϑ3(q))2=1+4n=0(q4n+11q4n+1q4n+31q4n+3)
a(q)=1+6n=0(q3n+11q3n+1q3n+21q3n+2)

No comments:

Post a Comment