Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, October 2, 2016

Entry 35

This continues Entry 34. Similar to its more famous cousin, Euler's prime-generating polynomial, the formulaP(n)=6n26n+31 yields consecutive prime values from n=029. Solving for P(n)=0, one gets τ=6+70812=3+1776. Plugging this into β(τ)=((η(2τ)η(3τ)η(τ)η(6τ))6(η(τ)η(6τ)η(2τ)η(3τ))6)2 with Dedekind eta function η(τ), we find that it exactly yields an integerβ(3+1776)=10602such thate2π/6177=10602+9.999992and the level-6 Ramanujan-Sato series1π=12651060k=0(2kk)kj=0(kj)31777038k+89418(10602)kwith the binomial coefficient (nk).

No comments:

Post a Comment