Sunday, October 2, 2016
Entry 35
This continues Entry 34. Similar to its more famous cousin, Euler's prime-generating polynomial, the formulaP(n)=6n2−6n+31 yields consecutive prime values from n=0→29. Solving for P(n)=0, one gets τ=6+√−70812=3+√−1776. Plugging this into β(τ)=((η(2τ)η(3τ)η(τ)η(6τ))6−(η(τ)η(6τ)η(2τ)η(3τ))6)2 with Dedekind eta function η(τ), we find that it exactly yields an integerβ(3+√−1776)=−10602such thate2π/6√177=10602+9.999992…and the level-6 Ramanujan-Sato series1π=1265⋅1060∞∑k=0(2kk)k∑j=0(kj)3177⋅7038k+89418(−10602)kwith the binomial coefficient (nk).
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment