yields consecutive prime values from n=0→29. Solving for P(n)=0, one gets τ=6+√−70812=3+√−1776. Plugging this into β(τ)=((η(2τ)η(3τ)η(τ)η(6τ))6−(η(τ)η(6τ)η(2τ)η(3τ))6)2
with Dedekind eta function η(τ), we find that it exactly yields an integerβ(3+√−1776)=−10602
such thate2π/6√177=10602+9.999992…
and the level-6 Ramanujan-Sato series1π=1265⋅1060∞∑k=0(2kk)k∑j=0(kj)3177⋅7038k+89418(−10602)k
with the binomial coefficient (nk).
No comments:
Post a Comment