Thursday, September 29, 2016

Entry 29

The first Watson triple integral was discussed in Enry 26. It turns out all three integrals can be expressed simply by the Dedekind eta function \(\eta(\tau)\)$$\begin{aligned}I_1 &= \frac{1}{\pi^3}\int_0^\pi \int_0^\pi \int_0^\pi \frac{dx\, dy\, dz}{1-\cos x\cos y\cos z}=4\,\eta^4(i)\\I_2 &= \frac{1}{\pi^3}\int_0^\pi \int_0^\pi \int_0^\pi \frac{dx\, dy\, dz}{3-\cos x\cos y-\cos x\cos z-\cos y\cos z}=4^{1/3}\sqrt{3}\,\eta^4(\sqrt{-3})\\I_3 &= \frac{1}{\pi^3}\int_0^\pi \int_0^\pi \int_0^\pi \frac{dx\, dy\, dz}{1-\cos x-\cos y-\cos z}=2\sqrt{6}\,(1+\sqrt{2})^{1/3}\eta^4(\sqrt{-6})\end{aligned}$$In terms of the gamma function$$\begin{aligned}I_1&= \frac{\Gamma^4(\frac{1}{4})}{4\pi^3}\\I_2&= \frac{3\Gamma^6(\frac{1}{3})}{2^{14/3}\pi^4}\\I_3&= \frac{\Gamma(\frac{1}{24})\Gamma(\frac{5}{24})\Gamma(\frac{7}{24})\Gamma(\frac{11}{24})}{16\sqrt{6}\,\pi^3} \end{aligned}$$. There are infinitely many Ramanujan-type formulas for the \(I_i\) a few of which are $$\begin{aligned}\frac{(1+\sqrt{2})\Gamma\big(\tfrac{3}{8}\big)^4}{(2\pi)^{5/2}}\sqrt{I_1} &= \sum_{n=0}^\infty \frac{(2n)!^3}{n!^6} \frac{1}{(-2^6)^n}\\
\frac{1}{\sqrt{2}}\,I_1 &=\sum_{n=0}^\infty \frac{(2n)!^3}{n!^6} \frac{1}{(-2^9)^n}\\
\frac{4}{\sqrt{3}}\,I_2 &=\sum_{n=0}^\infty \frac{(2n)!^3}{n!^6} \frac{1}{(2^8)^n}\\
\frac{1+\sqrt{2}+\sqrt{6}}{\sqrt{6}}\,I_3 &=\sum_{n=0}^\infty \frac{(2n)!^3}{n!^6} \frac{1}{\big(2^3(1+\sqrt{2}+\sqrt{6})^3(1+\sqrt{2})\big)^n}\end{aligned}$$ There is one other formula that belongs to the family with denominators as powers of \(2\)$$16\,\eta(\sqrt{-7})^4 =\sum_{n=0}^\infty \frac{(2n)!^3}{n!^6} \frac{1}{(2^{12})^n}$$but I don't know if this has an equivalent and analogous integral.

No comments:

Post a Comment