Processing math: 100%

Wednesday, May 14, 2025

Entry 1

Ramanujan gave, (3x2+5xy5y2)3+(4x24xy+6y2)3+(5x25xy3y2)3=(6x24xy+4y2)3 We can generalize this such that for any a3+b3+c3+d3=0 we can generate an infinite more, A3+B3+C3+D3=(a3+b3+c3+d3)(x2+wy2)3 and A,B,C,D are quadratic forms, A=ax2v1xy+bwy2B=bx2+v1xy+awy2C=cx2+v2xy+dwy2D=dx2v2xy+cwy2 where (v1,v2,w)=(c2d2,a2b2,(a+b)(c+d)).

Wednesday, November 6, 2019

Level 126

For level >119, there are no more moonshine functions with uppercase index (in Atlas notation). Define dk=η(kτ) with the Dedekind eta function η(τ) then for Level 126, a=(d27d29d3d14d18d21),b=(d21d263d2d3d21d126)c=(d214d218d6d7d9d42),d=(d22d2126d1d6d42d63) The quadruple (a,b,c,d) obey a2=bc1=d and their ratios are cubes (ab)2(cd)=(d7d9d1d63)3(ab)(cd)2=(d14d18d2d126)3

Level 42

Define dk=η(kτ) with the Dedekind eta function η(τ) then for Level 42 a=(d21d214d2d3d7d42),b=(d22d27d1d6d14d21)c=(d23d242d1d6d14d21),d=(d26d221d2d3d7d42) The quadruple (a,b,c,d) obey abcd=1a+3=bc+1=d and their ratios are squares ad=(d1d14d6d21)2bc=(d2d7d3d42)2

Level 28

For certain even levels divisible by 7, we may still find an eta quotient a such that a+m=b is also an eta quotient, but only for one integer m. Define dk=η(kτ) with the Dedekind eta function η(τ) and a=(d1d7d4d28),b=(d32d314d1d24d7d228) then a+2=ba+4a+4=(d22d214d1d4d7d28)3b+4b4=(d1d7d2d14)3 where (a,b) is the McKay-Thompson series of class 28C for the Monster (A161970).

Summary

(Under construction)